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Advances in computer capacity and speed, together with increasing demands on
efficiency of aircraft design process, have intensified the use of simulation-based analysis
tools to explore design alternatives both at the component and system levels. High fidelity
engineering simulations, typically needed for aircraft design, will require extensive
computational resources and database support for the purpose of design optimization, as
many disciplines are necessarily involved. Even relatively simplified models require
exchange of large amounts of data among various disciplinary analyses. Crucial to an
efficient aircraft simulation-based design, therefore, is a robust data modeling methodology
for both recording the information and exchanging data efficiently and reliably. To meet this
goal, data modeling issues involved in the aircraft multidisciplinary design are first
examined in this study. Development and implementation of an XML-based, extensible data
object model suitable for multidisciplinary aircraft design is then discussed. The model,
which incorporates aircraft databinding and aircraft persistence engine, allows the design
applications to access, manipulate and manage any disciplinary data with a lightweight and
easy-to-use API. In addition, language independent representation of aircraft disciplinary
data in the model fosters interoperability amongst heterogeneous systems, thereby
facilitating data sharing and exchanging between various design tools and systems.

 I. Introduction
mprovement in aircraft design involves research into many distinct disciplines: aerodynamics, structures,
propulsion, noise, controls, and others. Due to the inherent complexity and coupling of the disciplinary design

issues, simulation-based analyses of aircraft design will naturally evolve to complex assemblies of dynamically
interacting disciplines where each of the disciplines interacts to various degrees with the other disciplines (see Fig.
1). The multidisciplinary couplings inherent in aircraft design not only increase computational burden but also
present additional challenges beyond those encountered in a single-disciplinary simulation of aircraft. The increased
computational burden simply reflects the massive size of the problem, with enormous amounts of analysis data and
design variables adding up with each additional discipline. As a result, designing and implementing a new
simulation methodology that supports the multidisciplinary aircraft design process can be an impractically expensive
and time-intensive task. Currently, well-developed and validated software tools exist within individual disciplines.
Hence, a key requirement for the success of a practical multidisciplinary aircraft simulation is to provide the tools
necessary to support efficient integration of these computer simulation codes. This approach demands a well-
constructed data sharing and validation environment, which includes a robust data modeling and/or the use of a data
exchange standard.

Traditional preliminary design procedures often decompose the aircraft into isolated components (wing,
fuselage, engine, etc.) and focus attention on the individual disciplines (geometry, propulsion, acoustics, etc.). The
common approach is to perform disciplinary analysis in a sequential manner where one discipline may synthesize
the results of the preceding analysis during the simulation run-time. The current practice emphasizes the
multidisciplinary nature involved in an aircraft design through the use of integrated product teams. However,
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integrated and sharable aircraft design databases are not yet common in industry. One reason for this is that aircraft
system simulation typically requires complex numerical algorithms and coupling models between dominant
disciplines. Accordingly, developers typically build propriety data storage models around successful design
applications, with each discipline focusing on activities related to its own concerns. The analysis tools provide each
discipline with only those data, which are specific to that discipline. Users often spend 50-80% of their time
organizing data and moving it between applications.1 A prevalent problem with this kind of data exchange is data
consistency. It is not uncommon to find that during the design phase, a particular discipline's updated calculations
have not been effectively communicated with other disciplines involved in the design effort. This breakdown in the
data exchange process results in inconsistent predictions among the various disciplines and could cause, for
example, an "optimal" aerodynamic design that is not consistent with the supportive structure.

Fig. 1 Examples of disciplines involved in an aircraft design. (For clarity not all disciplines are shown.)

Other factors that can impede the multidisciplinary analysis are data redundancy and the lack of a standard data
format. To synthesize and evaluate aircraft designs, numerous software packages for analysis, post processing, or
data visualization are often employed. Aircraft simulation computing environments are typically heterogeneous,
with platforms ranging from personal computers to UNIX workstations, to supercomputers. The internal data
representations in these systems are normally different. Users have many options to choose a
code/language/application, which in general limits automatic data exchange in various computing environments.
Furthermore, some analysis tools use data formats, possibly proprietary, which are custom-designed for efficient use
in specific disciplines. Collectively, all these factors lead to a lack of portability of data in different file systems and
hinder sharing and exchanging of interdisciplinary data. In addition, the multiplicity of representation of disciplinary
datasets not only wastes storage media capacity and CPU time, but it also generates an enormous overhead in terms
of data translator development, additional software and data management. Although in some cases, custom
translation tools are available to "massage" the data into the appropriate format, users still spend considerable time
and effort tracking and validating data. As the analysis and design tasks become more distributed, communications
requirements become more severe. Advances in aircraft disciplinary analyses and the growing trend in the use of
high fidelity models in the last two decades have only aggravated these problems, increasing the amount of shared
information and outpacing developments in interdisciplinary communications and system design methods.2

Data modeling is also an important issue in aircraft certification and operation. Currently, more than 80 large
databases of aviation safety data are being used by industry and the Federal Aviation Administration (FAA).
Examples include:24 Aircraft Type Certificates, Aircraft Registry (AR), BASIS (British Airways Safety Information
System),25 etc. There is a good deal of duplication; data collection efforts are fragmented, and databases are not
coordinated. For example, when investigating an accident, one or more links in the accident chain may be in some
cases associated with several disciplines in the aircraft design, but the relevant data may be scattered over separate,
unlinked databases. In this environment, developing a comprehensive and accurate understanding of system
malfunctions is difficult. For these reasons, government and industry are now exploring ways to construct advanced
databases, such as the Global Analysis and Information Network (GAIN),26 which would serve as a single global
database. The development of GAIN has been hampered, however, by how the data should be standardized, how
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they should be shared and disseminated, and so on. The use of standardized formats for aircraft data would facilitate
data collection, database management, and data dissemination. To be complete, aircraft database should include data
from manufacturers' design, regulatory inspectors and test engineers, etc.

This paper will focus on the development of a sharable, extensible database framework for aircraft
multidisciplinary design. The ideas advanced and methods employed are applicable to certification applications as
well. Considering the critical role of data sharing and management in aircraft design process, it becomes apparent
that one of the approaches to improve the simulation-based design process is the development of an integrated
software environment which can provide interoperability standards so that information can flow seamlessly across
heterogeneous machines, computing platforms, programming languages, and data and process representations.3 In
particular, emphasis should be placed on the creation of a database management system specifically crafted to
facilitate multidisciplinary aircraft design.

XML, due to its structured, platform and language independent, highly extensible and Web-enabled nature, has
rapidly become an emerging standard to represent data between diverse applications. The opportunity now exits to
take advantages of recent developments in XML and its related information technology to potentially liberate the
flow of data that are trapped within boundaries of disparate disciplinary data sources in the multidisciplinary aircraft
design, thereby promoting efficient interdisciplinary information sharing and data management. In the remainder of
this paper, we examine how this development might be achieved. In Section 2, we briefly outline some of the design
requirements relevant to the aircraft multidisciplinary analysis and optimization. Advantages of applying XML to
aircraft database design are analyzed in Section 3. Section 4 and Section 5 introduce the design advanced in this
paper, namely, aircraft data object models and aircraft schema design, two semantic data components in aircraft
design domain, based on object-oriented and XML based views, respectively. Section 6 describes the components of
an aircraft databinding framework developed in this research to allow easy conversion between the XML-based
aircraft data and their data object model. The related aircraft database persistence engine is described in Section 7.
Finally, conclusions appear in Section 8.

 II. Design Requirements
The Multidisciplinary Optimization Branch (MDOB) at NASA Langley Research Center (LaRC) recently

investigated frameworks for supporting multidisciplinary analysis and optimization research. The major goals of this
program were to increase the interactions among disciplines and promote sharing of information. Based on the
experience gained from the Framework for Multidisciplinary Design Optimization (MDO) project,4,5 this section
outlines several design requirements related to the data modeling that are particularly relevant to the aircraft
multidisciplinary analysis and optimization.

1) Standards. Use of standards in a database model preserves investment, results in lower maintenance costs and
also promotes information sharing. It ensures that there are no interoperability problems between design teams that
use the open standard.

2) Sharable. Data must be shared between disciplines and within disciplines with all the applicable quality,
consistency and integrity checks.1 Information sharing can reduce discipline isolation and encourage the use of the
most advanced techniques while increasing the awareness of the effects that each discipline has upon other
disciplines and help reduce design cycle time.6

3) High-level interface. The database model should allow the user to use and modify aircraft data in complex
MDO problem formulations easily without low-level programming. By raising the level of abstraction at which the
user programs the MDO problems, the programs could be constructed faster and be less prone to error.

4) Extensible. Advances in aircraft design will permit inclusion of new disciplines, such as maintainability,
productivity, etc., therefore a database model should be extensible. Furthermore, the model should provide support
for developing interfaces required to integrate new disciplinary information into the system easily. As a result, the
user would avoid having to wait for the needed features to appear in new software releases.

5) Large data size. Since aircraft design involves many disciplinary analysis variables and large datasets, the
database model should be able to handle large problem sizes. Supporting techniques should allow a database to grow
and shrink dynamically, but not degrade the database performance dramatically.

6) Object-oriented. The database model should be designed using object-oriented principles. Object-oriented
design7 has several advantages in aircraft design applications. For example, object-oriented principles provide
polymorphism for analysis or optimization methods at run time. Object-oriented software design has been employed
as a tool in providing a flexible, extensible, and robust multidisciplinary toolkit that establishes the protocol for
interfacing optimization with computationally intensive simulations.
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7) Distributed. For large problems, it is highly desirable that designers in different disciplinary teams be able to
conveniently work together by collaborative design.9 This can be facilitated by a database model that could support
disciplinary code execution distributed across a network of heterogeneous computers.

The implementation of a database to meet all of these requirements is a major challenge. In the following
sections, we focus on the design and development of an XML-based database model as a first step toward meeting
that challenge.

 III. A Survey on XML for Aircraft Data

A. Overview
XML10 (eXtensible Markup Language) is a standard "Recommendation" adopted by the World Wide Web

Consortium (W3C) in 1998. The language defines a generic robust syntax that allows user to add identifiers (or tags)
to certain data, and construct the structural relationships between them, so that they may be recognized and acted
upon during future processing. XML by itself specifies neither preconceived semantics nor a predefined tag set for
data.27 However, several XML-related standards and technologies provide means for defining content and semantics
of XML documents. Inherent within these standards are many good features that would be well suited to the task of
satisfying multidisciplinary data requirements.

As indicated in the previous section, data sharing is an essential element in preventing discipline isolation. XML
provides a hierarchical container that is platform-, language-, and vendor-independent, and separates the content
from any environment that may process it. XML is normatively simplified from an existing ISO standard, ISO 8879
(SGML),11 and is an acceptable candidate for full use within other ISO standards without further standardization
effort. By accepting and sending aircraft data in plain text format* the requirement to have a standard binary
encoding or storage format is eliminated, allowing aircraft applications running on disparate platforms to readily
communicate with each other. Aircraft design applications written in any programming language that processes
XML can be reused on any tier in a multi-tiered client/server environment or distributed computing, offering an
added level of reuse for aircraft data. The same cannot be said of any previous platform-specific binary executables.

When using XML, it not only allows input of data, but also permits one to define the structural relationships that
exist inside the data. The hierarchical structure in XML combined with its linking capabilities12,13 can encode a wide
variety of aircraft data structures. The element's name, attributes and content model are closely related to data class
name, properties and composition associations in object-oriented aircraft simulation. By using XML to represent
aircraft data, it is possible to faithfully model any structural aircraft data of a chosen component in their design
context.

Currently, Web-based technology for automatic generation and parsing of XML content is abundantly available
and can be used to leverage the development of an infrastructure that will alleviate the data/model exchange and
integration in a collaborative aircraft design environment. Like HTML, XML is a Web-enabled specification and
standard that both Netscape™ and Microsoft™ have endorsed and are included in their latest browser products.
However, XML is not HTML. In HTML, both the tag semantics and the tag set are fixed. A key difference between
XML and HTML is that XML itself is a metalanguage—a language can be used to develop an unlimited number of
special-purpose languages. One means to supply the XML data semantic can be achieved through the use of
Document Type Declaration (DTD)10 or XML-Schema,14 which defines the data contents and logical constraints on
how an XML document should be constructed. An added benefit from DTD and XML-Schema is that they enable
data validation support. A data file written in XML is considered "valid" when it follows the constraints that the
DTD or XML-Schema lays out for the XML data. The XML Schema also offers a number of other significant
advantages over DTD, such as more advanced data types and a very elaborate content model. Without XML, any
validation of aircraft data has to be implemented at the expense of work by application developers. When using
XML to encode aircraft design data, any validating XML parser can be used readily to check not only the syntax of
data, but also the validity and integrity of the aircraft data provided that a DTD/XML-Schema is offered. This
guarantees that the data producer and consumer exchange the aircraft disciplinary data correctly, and plays an
essential role in applying new Electronic Data Interchange (EDI) technology to aircraft design.

EDI is defined as52 "the computer-to-computer exchange of business data in standard formats.” Traditionally,
electronic business messages are normally interchanged via standard EDI protocols (including the X12 (Ref. 53),

                                                            
*There are also three common ways to store binary data in XML documents: Base64 encoding (a MIME encoding that maps
binary data to a subset of US-ASCII [0-9a-zA-Z+/] — see [RFC 2045]), hex encoding (where each binary octet is encoded using
two characters representing hexadecimal digits [0-9a-fA-F]), and unparsed entities (where the binary data is stored in a separate
physical entity from the rest of the XML document).
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and EDIFACT54 series), and their communications are carried out over proprietary Value Added Network (VAN).
The EDI protocols' brittle syntax has repeatedly been criticized for poor design, confusing or absent semantic, etc.55

XML, with its ability to transfer open, standard and semantic data over the Web, has opened a new paradigm, called
XML/EDI, for business data exchange. XML/EDI shines as it allows a system to encode the document's information
much more precisely and in a very rich structure using XML. Moreover, XML/EDI transactions can take place over
the Internet, which are more economical than traditional EDI messages, while being easier to validate and translate
into the formats needed by applications at each end of the exchange.56 In traditional aircraft multidisciplinary
analyses, validating data format and ensuring content correctness are among the major hurdles in achieving
exchange of aircraft data.

XML documents are also easily committed to a database (relational or object) or any other kind of native XML
databases. There are many XML-enabled (such as Oracle,28 Microsoft SQL Server 2000,29 etc.) or XML native
databases (such as dbXML,30 Xindice,31 etc.) available that deliver this type of functionality. This lends XML to be
used in the large-scale distributed aircraft design process where the information is used by different components
and/or systems groups. XML documents normally fall into two broad categories: data-centric and document-
centric.32 Data-centric documents are those where XML is used as a data transport. They include scientific data, such
as CFD, FEM, CAD, etc. Their physical structure (e.g., the order of sibling elements, whether data is stored in
attributes or PCDATA-only elements, etc.) is often unimportant. Document-centric documents are those in which
XML is used for its SGML-like capabilities, such as in design manuals, or static aircraft maintenance log. They are
characterized by irregular structure and mixed content and their physical structure is important. To store and retrieve
the data in data-centric documents, an XML-enabled database is often used, as it is best suited for maintaining the
integrity of data, but some sort of data transfer software are needed. The query of data can be done by standard
Structured Query Language (SQL).33 To store and retrieve document-centric documents, a native XML database or
content management system normally is a better approach. Both of these are designed to store content fragments,
such as procedures, chapters, etc. In this case, XML-based query languages, such as (XPath,34 XQuery,35 etc.) are
used to question the databases.

B. XML-based Scientific Specifications Pertinent to Aircraft Disciplines
XML has been enthusiastically adopted by many industry work groups and companies to develop their standard

engineering application models. Many applications became available very quickly and are very relevant to the
engineering data exchange endeavor. Examples include: XML/Data Extension tool36 from Autodesk Inc. for its
AutoCAD 2000i family of products; eXT, an XML-based 3D MCAD interoperability standard around UGS's
Parasolid XT format;37 and 3D Instant Website38 from Solidworks, which enables users to easily create, modify and
display 3D data on a Web site using XML standards and XSL39 templates.

In addition to these proprietary efforts, some science disciplines (including mathematics, chemistry and biology,
etc.), and the scientific computing community (e.g., XSIL,40 MatML,41 femML,42 STEPml43) are developing XML-
based data exchange languages. The core part of these languages is the use of DTD/XML-Schema to define their
data semantics. Some of these schemas are very useful in the interchange and modeling of aircraft disciplinary data,
and are briefly described below. These schemas can be dynamically incorporated into the research work presented
herein (see Section 6).

MatML41 is an XML-based materials-oriented specification. Being coordinated by the National Institute of
Standards and Technology (NIST), MatML targets multiple industries for facilitating the exchange of a wide variety
of material properties. The current version (MatML3.0) ported the language specification from DTD to XML
Schema, and has many refinements over pervious version, including redundancy elimination, units content model;
measurement uncertainty, etc. The ultimate goal of MatML is to provide for direct program-to-program
interoperability, efficient data processing, and rapid, reliable, and useful response to searches for materials data over
the Web.

femML42 is an XML variant to aid in the data interpretation and interoperability in the Finite Element Modeling
domain. The project was initiated by members of the Composite Materials and Structures group at the Naval
Research Laboratory and the International Science and Technology Outreach Society. The focus of this work was to
utilize the XML's power of semantic encapsulation along with the existing and continuously improving associated
technology to develop a dialect for exchanging FEM data across various codes with heterogeneous input formats.
MatML is used as a Namespace44 in the specification. The current DTD implementation (v. 1.02) follows a strict
FEM data file structural architecture.

STEPml43 takes the data models from STEP,18 the international product data representation and exchange
standard, and publishes them as XML specifications using DTDs and/or XML Schemas. The resulting specification
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brings together the rich semantics of STEP and the widespread adoption of XML technology. STEPml is sponsored
by PDES Inc, an international industry/government consortium.

Another use of XML was recently proposed by NASA Ames Research Center, U.S. Naval Air Systems
Command, etc., in their DAVE-ML project.45 The goal of the project is to develop an XML application to encode
complete aircraft flight vehicle dynamic models in a language-independent, consistent way to expedite model
exchange and validation between different simulation facilities and tools. Jackson et al.,46 who introduced the
concept of DAVE-ML, estimated potential savings of over $6M in productivity gains and reduced simulator down-
time for a single aircraft type in one year from adopting a standard such as XML for vehicle model updates.
Currently, as reported in the literature, DAVE-ML is still in its initial development status and not yet implemented.

C. Further Issues in XML-based Aircraft Database Design
The various advantages outlined above present compelling reasons to use XML for aircraft design data

interchange and database management. However, the solution is not as easy as it might at first appear, as outlined
next.

1) The interdisciplinary and multidisciplinary coupling inherent in MDO tends to present additional challenges
beyond those encountered in a single-discipline optimization. The independent industrial initiatives mentioned
above generally focus on describing single disciplinary data, and most of them do little to facilitate interaction
across industry and functional boundaries. In addition, a vendor has obvious incentives for describing its offerings in
ways that highlight its competitive advantages and obscure comparison on features where it lacks an advantage.

2) Semantic interoperability is of vital importance between different aircraft disciplines and simulation
components, as it enables them to agree on how to use aircraft data and how to interpret application data for
different disciplinary designs. Although some industry standards have been designed that allow schematically
interpret single disciplinary data, still many other important disciplinary specifications (such as maintainability,
control, etc.) involved in aircraft design are required. Even if they will become available soon, XML by itself does
not enable plug-and-play to easily use and share data. This presents another challenge in interchanging the aircraft
disciplinary design data.

3) Current discipline-pertinent specifications often fall short in adequately uniting several other data exchange
design requirements (for example, large datasets, object-oriented, high-level interface, distributed, etc.) in order to
effectively use XML to communicate aircraft design data between disciplines. Increasing disciplinary interactivity is
not accomplished effectively by just putting more and more data and functionality onto clients. Good
multidisciplinary aircraft database design means making application implementation easier, allowing for quicker
reach of disciplinary data into affected disciplines, improved performance when processing transactions, and most
importantly, ensuring aircraft design data consistency and security using proven database mechanisms.

A successful collaborative aircraft database modeling system should at least combine a good level of
interoperable data with enough extensibility for data interchange and management. We propose that an XML-based
database model employing reusable semantic components common to many aircraft design domains will meet those
requirements. Such a model can be easily understood by aircraft designers, while it also provides a common
mechanism for linking to the current, unique industry specifications, thus enabling users to benefit from any and all
available specifications. In the next section, we will present the design of such an aircraft data object model. This
model is also used to interpret aircraft design data between design disciplines, and serve as a foundation to
implement an XML-based aircraft database to meet all of the above design requirements.

 IV. Data Object Model
The aircraft design process15 can be divided into three phases: conceptual design, preliminary design, and

detailed design. Since aircraft design by its nature is a very complicated process and involves vast amounts of data,
for the purposes of this paper, we will only demonstrate the data model in the aircraft conceptual design. Conceptual
design involves the exploration of alternate concepts for satisfying aircraft design specifications. Trade-off studies
between aircraft conceptual designs are made with system synthesis tools, which encompass most of aircraft
components and a broad range of disciplinary interactions.

In order to effectively represent aircraft design data using XML, a set of data object structure was first designed.
Figure 2 shows an overall layout of the static model, simplified for brevity. The designed database model is
composed of aircraft components and other disciplinary data objects (Fig. 2a). The overall model is organized in a
strict hierarchical manner in accordance with the XML topology. Each node in the data structure shown here is
represented as an Aircraft Data Object (ADO). These objects hold no complex design logic, but they contain typed
data and preserve the logical structure of the model. The ADO model precisely defines the intellectual content of
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aircraft-related data, including the organizational structure supporting such data and the conventions adopted to
standardize the data exchange process. The functional model identifies a common process in order to ascertain what
data are required for a typical aircraft design process. Figure 2 also indicates (informally) what data, if any, are
encapsulated within each node object.

A. Aircraft Components
An aircraft component (AC_Component) object can be an engine, fuselage, landing gear, canard, horizontal

stabilizer, vertical rudder, wing, etc. (Fig. 2b). Every component has a user-defined name and unique component
type, which characterizes the nature of its usage. For practical purposes, a component type is characterized as a set
of possible values, such as WING, ENGINE, etc. There is a special data type, called object identification
(Component_ID), whose value is the unique identifiers of encapsulated objects to be referenced in the aircraft
design.

Each aircraft component itself may be made up of physically distinguishable subcomponents or parts. For
example, an engine is made up of inlet, fan, compressor, combustor, turbine and nozzle subcomponents. Likewise,
most landing gears have parts like wheel, tire, brake assembly, etc. Every subcomponent is represented by a data
object, with member properties and subtypes (not shown here for simplicity) encapsulated in it. Each part is modeled
as a component member object and encapsulated as a child in AC_Component. An important feature to note from
Fig. 2b is the local inclusion of several disciplinary data. Since each member object has its own materials
requirements (e.g., modulus of rigidity, fatigue strength, etc.), structure and loads characteristics (e.g., strain, stress,
displacement, etc.), these disciplinary data are naturally considered as parts of a member object. The local inclusion
of component disciplines prevents design data isolation, and promotes data sharing and exchange during the design
process. Aircraft propulsion system (not shown here) is considered as a member type for the engine components. A
more detailed demonstration for aircraft propulsion model can be found in Ref. 16.

Besides the hierarchical structure layer of data objects, the designed model also encourages the use of data object
abstraction, inheritance, and composition. Referring to Fig. 2b, it can be seen that each of the specific aircraft
components is patterned as an "is/a" relationship with AC_Component, therefore each specific component data
model automatically inherits all the data member proprieties and subtypes (materials, structure and load) of its
parent. In this sense, AC_Component provides a data abstraction for all its component children, allowing each single
element to be treated the same way as the assemblies of elements in its internal data representation. For each specific
aircraft component data modeling, we can represent the hierarchical structure of the data properties, substructure and
their disciplinary data using recursive composition. For example, we can combine multiple sets of rotor and stator
blade data objects to form a fan component data object. This technique allows us to build increasingly complex
aircraft data components out of simple data object models. The designed database model gives us a convenient way
to construct and use arbitrary complex aircraft data model and makes the model totally extensible for future
enhancements.

B. Geometry Modeling
Component geometry modeling is somewhat unique in aircraft design. All disciplines-specific analyses share the

same geometry. Strong interactions between the disciplines are very common and thus necessary in analysis. For
example, during operation, the geometry of a flexible structure (e.g., wing) may change due to the aeroelastic
effects. Geometry modeling must, therefore, be accurate and suitable for various disciplines (e.g. deflection and
load). For a multidisciplinary optimization problem, the application must also use a consistent parameterization
across all disciplines. Thus, an application would benefit from a common geometry dataset that can be manipulated
and shared among various disciplines.17

STEP Application Protocol AP209 - Composite and metallic structural analysis and related design57 - is a set of
standards that specifies computer-interpretable composite and metallic structural product definition including their
shape, their associated finite element analysis (FEA) model and results, and material properties. AP209 supports not
only CAD geometry modeling, such as topology, assemblies, and configuration management data of solid models,
but also the associated finite element representations for mechanical parts. The STEP modelers have undertaken the
very difficult job of defining mappings between the different representations of the same information. For example,
a curve on the surface of fuselage can be represented as a B-spline, as a list of curve segments, or as NURBs. In our
aircraft database, a placeholder has been designed to support various aircraft components' geometry disciplinary data
that conform to the STEP-based model. The placeholder can also accommodate other CAD/FEA-related industry
models, such as the model defined in femML. Because different components normally have very different geometry
requirements, the geometry disciplinary data are considered local to every concrete component. Different fidelity
geometry models can be chosen for use in the design process.
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Fig. 2 A simplified Aircraft Data Object (ADO) static structure. Each ADO may hierarchically encapsulate
many other children ADOs.
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C. Global Disciplines
Other disciplinary data, such as stability and control, aerodynamic, performance, cost, and weight data, are

currently modeled as global objects (and grouped together as GlobalDisciplines) of the aircraft database (Fig. 2c).
This may seem a little unnatural, however, these calculations have been traditionally grouped by discipline in
aircraft design, and they probably will continue to be associated in this manner for some time to come. The
relationship between these disciplinary data and aircraft database is also modeled as parent to child. For example,
one of the relative important design parameters of the conceptual vehicle design is system performance. This
disciplinary category in our design is currently made up of different criteria data objects, such as distance, speeds,
limits, measures, etc., as shown in Fig. 2c. The figure also gives the sample data that may be included in the
discipline. New data will be added in as the data object model evolves in the future.

 V. Schema Design
Aircraft Schema establishes a bridge between XML-based description of aircraft data and the ADO model. A set

of aircraft Schema has been designed in XML Schema language that specifies how the constituents of the ADO
object are mapped to an underlying XML structure. It associates each piece of information defined in ADO to a
precise location in the XML structure.

Each aircraft data object defined in ADO is mapped to one or more nodes. For the most part, the aircraft Schema
closely follows the ADO model. Aircraft-schema file must be ADO-compliant in order for other applications to be
able to properly interpret aircraft data. This is particularly important when trying to transfer data between different
disciplines and different storage models, as there must be agreed-upon data structure and syntax for different
systems to understand each other. The rules in ADO model will guarantee that the schema description of aircraft
data is syntactically correct and follows the grammar defined within it. An important feature of the ADO data model
is the hierarchical structure, which allows the aircraft data file to be structured as a root-directed graph, so it is
necessary to map the directed graph of aircraft data in XML onto a tree of aircraft data objects specified in ADO.
However, when a given piece of information is listed as being "under" a node, there are actually two possibilities:
the information can be stored as data in the current node, or it can be stored as data under a separate child node. The
aircraft schema also determines which of these two possibilities are best for each situation.

An example of aircraft schema design is demonstrated in Fig. 3. Based on the ADO model, an aircraft database
model includes several kinds of component data objects (such as Wing, Fuselage etc.), which can be contained in an
aircraft, and a GlobalDisciplines data object. To create aircraft component constructs, we start by creating a basic
aircraft component complex type, AircraftComponent_t, which contains a single AircraftMember
element. An AircraftMember  is constrained by its complexType AircraftMember_t , where
AircraftMember_t itself contains Name, TotalWeight, Materials, and StructureLoad elements,
and in turn, are constrained by their corresponding built-in string type, double type and similarly-defined
complexTypes separately.

An aircraft component also contains a set of desired data attributes—componentType, name,
identification—that are encapsulated in the AircraftComponent object. These attributes are grouped together,
represented by ComponentAttributes, and referenced by name in the AircraftComponent's complexType
declaration. For example, the componentType attribute is restricted to a set of predefined type values, such as
WING, LANDINGGEAR, etc., these types are constrained by enumerations definition in the simpleType definition.

Next, a set of concrete aircraft components is built based on the AircraftComponent_t complexType. The
technique here is to derive new (complex) aircraft component types by extending an existing type. For example,
when building data schema for the wing component, we define the content model for Wing element using new
complex types, Wing_t, in the usual way; in addition, we indicate that the concrete wing component (Wing) is
extending the AircraftComponent_t base type. When a complex type is derived by extension, its effective
content model is the content model of the base type plus the content model specified in the type derivation. In the
case of Wing element, its content model Wing_t is the content model of AircraftComponent_t plus the
declarations for the wing's local data elements and attributes.

Other aircraft component and disciplinary data schema can be designed in a similar manner. For example,
DataArray complexType is an atomic type designed in the schema, using the list simpleType definition (xsd:list)
combined with union type (xsd:union) to model arrays, vectors or multiphysics fields in the simulation. Finally, the
whole aircraft schema is composed of different aircraft components and GlobalDisciplines data. Note that when
designing aircraft schema, all the basic components and disciplinary schemas do not need to be coded in a single file
at the design time. For example, Fig. 3 does not explicitly show the disciplinary schema such as material, structure
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and load, components other than wing, etc. Instead, it uses include element to indicate that these schemas exist
outside the aircraft schema file. In this way, each schema can be designed separately by different disciplinary
groups, and then "included" together during the run time. This kind of flexible design will allow for modular
development and easy modification of aircraft schema as its data object model evolves in the future.

Our database model currently uses STEP AP209 standard to encode aircraft geometry disciplinary data (CAD
and FEA data). In addition, the database allows other industrial standards, such as femML and MatML (see Section
6.3), to be added in dynamically. STEP models are created using the EXPRESS language.19 It provides a rich
collection of types and inheritance organizations to capture data structure and to describe information requirements
and correctness conditions necessary for meaningful data exchange, therefore makes it easier to describe an accurate
aircraft geometry model. However EXPRESS does not dictate how the models should be implemented using various
database technologies. Implementers must convert an EXPRESS information model into schema definitions for the
target database. This conversion requires a mapping from the EXPRESS language into the data model of the target
database system. EXPRESS information models describe logical structures that must be mapped to a software
technology before they can be used.

Given an EXPRESS schema that specifies aircraft CAD geometry and/or FEA information, it is possible to
define a set of schema languages (such as DTD or XML-Schema) that can be used to encode the information
specified in EXPRESS schema. Several works have been done to encode EXPRESS schema by DTDs, among
which the most important one is STEP Part 28 (XML representation of EXPRESS-driven data),20 which includes a
set of standard DTD declarations to represent any EXPRESS schemas in XML as well as data corresponding to an
EXPRESS schema. Therefore, it is convenient to take advantage of this standard to encode all the aircraft CAD and
FEA data. This is done by designing a STEP_DTDConverter, which can convert from a valid aircraft geometry
STEP model constrained by DTD to XML-Schema. In this way, the general schema design techniques provided in
this section can still be applied to aircraft geometry disciplinary data. Representation of the STEP model using
XML-Schema also benefits from the good features in XML-Schema, such as modular schema inclusion
(XInclude),12 and also offers a uniform data schema formalism for database implementation. A simple illustration is
given in Fig. 4.

 VI. Aircraft Databinding
Simulation-based multidisciplinary design of aircraft systems is a complex, computationally intensive process

that combines discipline analyses with intensive data exchange and decision making. The decision making is based
on the overall design optimization but is greatly assisted by data sharing and automation.5 Aircraft data encoded by
XML provides a means to share disciplinary data between aircraft design teams, but their physical storage form on
an external storage medium is still not intelligible or easily accessible. Aircraft databinding provides an
implementation for the data object model designed in the present research. Meanwhile, it also encapsulates a
convenient way for conversion between the aircraft data in XML file and their object representations automatically
and provides a lightweight and easy-to-use API, which facilities the design applications to access, modify and store
any aircraft data object using a high-level object interface.

Aircraft Databinding includes two components: an aircraft schema compiler and a marshalling framework. It was
written in Java;21 thus the software can be run on different design platforms. Aircraft Databinding Framework
closely follows the common XML databinding architecture. As a result, any of the available software that adheres to
the architecture (such as JAXB,47 Caster,48 Zeus,49 etc.) is pluggable into our design. There are several reasons why
the available software is not used in the present work. First, when the present work began in 1999, JAXB was still a
Java Specification Request (JSR-031) (Ref. 50), thus the authors had to design and develop their own. Second, most
of the other databinding, such as Zeus, are DTD-based and are not XML-schema based. JAXB was also DTD-based
for a long time. Our databinding also supports many advanced data types in XML-schema, which are heavily used in
our aircraft schema, but are not yet fully implemented by other data databinding software. For example, list and
union types are very important for DataArray type and are currently not supported in Castor. To the best of our
knowledge, the current JAXB 1.02 does not support schema features such as abstract, instance type substitution
(xsi:type), etc., which are essential in modeling inheritance in the ADO model. Additionally and most importantly,
we believe performance is an important consideration in aircraft design applications and hence a great deal of
attention has been, and will continue to be, paid to our databinding framework with the objective of improving
performance. The databinding together with other modules designed in our aircraft database are shown in Fig. 7, and
are further described next.



LIN AND AFJEH

164

Fig. 3 A sample aircraft schema.
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Fig. 4 An example of using STEP_DTDConverter, showing conversion from DTD to Schema for three-
dimensional point representation.

A. Schema Compiler
The aircraft schema compiler is designed to automatically translate the aircraft schema into a set of derived

aircraft data class source codes. It maps instances of aircraft schemas into their data object models, and then
generates a set of classes and types to represent those models (see Fig. 5).

Fig. 5 Schema compiler in aircraft databinding.

Consider how a data class is generated by schema compiler with input of the schema defined in previous section.
With the "Aircraft" schema defined, attributes represent simple Java types, usually primitives. Thus, name and
componentType attributes in the AircraftComponent's complexType are compiled into Java type of String, and
identification attribute becomes Java primitive of type int, respectively. For DataArray type attributes,
java.util.Vector is generated, where each member type is the actual data type inside the DataArray. All elements
(along with its type information which specifies the content model), such as Aircraft, AircraftComponent etc.,
become Java Classes, which can then have class instance properties themselves, again represented by attributes.
Clearly, a recursion occurs: an element becomes a new class, and each property of it is examined. If the property is
an attribute, a simple Java primitive member variable is created for the object; if the property is element, a new data
object type is created, added as a member variable, and the process begins again on the new object type, until all
classes are created. All other aircraft components and disciplinary data can be similarly created. A Unified Modeling
Language (UML)22 diagram of generated Java class (only wing component is shown) is illustrated in Fig. 6. The
generated classes also ensure that all the hierarchical data object structure and their internal relationships are
properly maintained. For example, the figure shows that Wing is a subclass that extends AircraftComponent,
therefore, it inherits all states and behaviors from its ancestor.
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In addition, the generated classes provide methods to access and modify the properties defined in the aircraft
Schema. These methods closely follow the JavaBean Design Pattern.23 The main guideline for the design pattern is
that all publicly accessible fields have proper getter (accessor) and setter (mutator) methods. For a given field, a
getter method is quite simply a method that returns the value of that field, while a setter method is one that allows us
to set the value of the field. Each method signature specifies the name of the operation, which is sufficient for design
tools to obtain information about the fields of data classes by examining the method signatures of a given class. This
examination process is called Introspection.

For each aircraft data class that is automatically generated, e.g. AircraftComponent, there is also included a set of
marshal, unmarshal, and validate methods, with their method signatures like

public boolean validate()

public void marshal(Writer out)

public AircraftComponent unmarshal(Reader reader)

The validate method is used to check whether the aircraft data contained in XML file is valid, i.e. conform to its
corresponding data schema; marshal and unmarshal methods can be used to map directly to the data of
elements and attributes within the XML document and also affect the underlying aircraft data. This is achieved
through underlying Marshalling Framework design.

Fig. 6 UML for data class structure generated by aircraft databinding.

B. Marshalling Framework
The marshalling framework supports the transportation (unmarshal) of aircraft data in XML files into graphs of

interrelated instances of aircraft data objects that are generated during schema complier and also converts (marshal)
such graphs back into XML file. For example, when XML-based wing data are correctly unmarshaled into Java
codes, the Wing node in the XML file becomes an instance of the Wing class that was generated by aircraft schema
compiler, i.e. Wing data object. The aircraft design system can then interface aircraft data objects, and all
interactions and manipulations of aircraft disciplinary data in a design system can be described as invocations of
operations on those objects. In particular, the aircraft design application can use the data objects devised with a set
of mutator and accesor methods to work with the aircraft data. Therefore, the marshalling framework provides a
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convenient way to access and modify the aircraft data where all underlying files are transparent to the user. The end
result is aircraft data binding.

C. Dynamic Addition of External Schema
Aircraft databinding also provides a service that enables dynamically add-in new aircraft disciplinary schemas,

such as maintainability, productivity, etc. These schemas can be either in XML-schema format or in DTD format,
but they must conform to a set of newly designed disciplinary data object models. For example,
STEP_DTDConverter developed in this work, is an example of this service that provides a set of tools and libraries
to read and write STEP Part28 compatible DTD file and to be used for aircraft geometry and FEM modeling (Fig.
5).

Industry specifications that are currently available (such as MatML, femML, etc.) are valuable within the aircraft
schema development context. The current framework allows users to readily utilize these specifications. Figure 7
shows an example of integrating MatML 3.0 schema into the designed database in aircraft databinding. In general,
different disciplinary schemas are included as separated namespace44 for the entire aircraft schemas, and the aircraft
databinding will generate separate Java packages to hold the different disciplinary data objects. For example,
MatML schema was compiled into Java package ado.material.external in Fig. 7. By using add-in support to aircraft
disciplinary schema, the databinding code itself is kept generic and does not need any special coding for a new
problem.

Fig. 7 XML-based database for multidisciplinary aircraft design, showing: 1) the integration of aircraft
discipline schemas with the designed database management system; 2) dynamically new disciplinary schema
add-in - MatML 3.0; 3) ZipArchiver and XIncluder/XSplitter use to improve database performance.

D. Distributed Access
As the argument in marshal is a general Writer object, it can be piped to or wrapped into many other different

writers or streams, such as a network connection, or another program. This means marshaling can be done remotely
from aircraft disciplinary design team servers (Fig. 8). The same applies to unmarshaling process where a general
Reader is used. A set of sample disciplinary drivers have been written that use HTTP socket connection, Java
Servlet, CORBA, RMI technology to allow the databinding to be called from different client working environments.
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These discipline drivers can serve as a 'plug-in' for aircraft disciplinary simulation codes and enables them to use
XML-based aircraft data easily and remotely. According to the design requirements, more than one discipline data
may need to be called by a driver. The interfaces between the discipline codes and their drivers must be accurately
specified in order to provide proper communications. The disciplinary drivers can also serve as templates or
examples for more complex problems.

E. Performance
Since XML representation of aircraft data is likely large in size, in order to improve aircraft database

performance, the databinding internally integrates another service, through XInclude12 and Xlink,13 that further
allows users to split an arbitrary large aircraft data file into a sequence of sufficiently small subfiles during the
marshalling process. An example is shown in Fig. 7 for the simulation results of a CFD case - AC_CFD00001,
which was split into ‘AC_CFD000011.xml’ and ‘AC_CFD000012.xml’ subfiles. These two files will be resembled
together later when unmarshaling XML-based aircraft data to their data objects. This kind of flexibility allows the
entire aircraft data files to span among multiple physical files, possibly residing in different computers by
referencing as Uniform Resources Identifiers (URI). In addition, this feature makes possible a portion of one aircraft
data file to be referenced by several other aircraft files. The individual files are more portable due to their reduced
size, and use less memory to represent the entire layered tree of the aircraft data nodes. In addition, a ZipArchiver is
included in the aircraft databinding, which compresses the aircraft data in XML subfiles into different Zip entities in
an aircraft archive when transferring aircraft data objects to data files. By using text compression algorithms, the
data file size can be much smaller than the original XML file size, and even compatible in size with binary
representation of the same data. This reduces file I/O access times and improves performance for large aircraft
datasets.

Fig. 8 Design teams use Marshal Framework to access aircraft data remotely

 VII. Data Persistence Engine
Aircraft databinding provides an easier way to access sharable disciplinary data. However, it still lacks certain

features found in a real database: security, transactions, data integrity, multi-user access, and so on. Databases and
XML offer complementary functionalities for storing data. Databases enable efficient transactions between the user
interface and the rest of the functional modules within the applications whereas XML offers an easy information
exchange that enables interoperability between applications. An underlying database persistence engine is designed
to let the user store aircraft data to XML-enabled or XML-native databases.

A. Aircraft Data Store for Persistence
The main goal of an aircraft persistence engine is to have a persistent storage mechanism that is independent of

its environment and that is invisible to the simulation users. This is achieved internally by different aircraft
DataAdapters to connect to disparate data sources, coupled with an internal data transaction and persistence tools for
data transfer, data queries, etc. Each DataAdapter dynamically integrates diverse data sources and makes them
readily available for use within the aircraft design. As mentioned in Section 3, an XML-enabled database is
normally used to transfer data-centric aircraft file (such as CFD, FEM, etc.) between a disciplinary document and a
database. Transferring a data-centric aircraft document to a relational or object-oriented database requires first
creating a mapping between them. This is done by model-driven mapping.58 In a model-driven mapping, a data
model of some sort is imposed on the structure of the XML-based aircraft data file and this is mapped, either
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implicitly or explicitly, to the structures in a database and vice versa. Since aircraft data are stored in XML based on
the ADO data object models, it is natural to use this model to drive the mapping as well.

Given a set of aircraft schemas that closely reflects ADO models, the database mapping can be automatically
generated from the schema by a MapGenerator. A MapGenerator generates the object view of the element types,
attributes, and aircraft data in an XML file and how to map this view to the object/relational database schema. In
addition, the MapGenerator can specify the database view of all the tables, rows, and columns and how to map them
back to elements, attributes, and disciplinary data in an XML file. The map object also maintains the hierarchy
relationship between aircraft data specified in ADO model to ensure that all the existing internal relationship will not
be broken during transferring from database to XDF and vice versa. As Java Database Connectivity (JDBC)51 is
used in the underlying transfer, this mapping is hidden from the designers during the data transfer, and can work
with any object-oriented or hierarchical databases (Fig. 9).

On the other hand, native XML databases are used to store document-centric data, such as test reports, flight
maintenance logs and design manuals. Like other databases, native database support features like store, retrieve,
transactions, security, multi-user access, programmatic APIs, query languages, and so on. The difference from other
databases is that their internal models are based on XML and not something else, such as the relational model.
Therefore, a native XML database does not ask the user to worry about how to map XML structures onto some non-
XML underlying data model or processing language. Instead, users can continue to use the native XML databases
tools that are wrapped by aircraft DataAdaptors for data transactions.

Fig. 9 Aircraft Data Store enables the persistence of XML-based disciplinary data to XML-based or XML-
enabled database.

The large pool of data stored by participating aircraft teams improves the capability of analyses to correlate data
and identify rare phenomena that may have gone undetected in the past until they caused a serious incident or
accident. Because the data collected by aircraft persistence engine comes from many different disciplines, the
database systems can also facilitate the exchange of lessons learned among manufacturers. This is important when a
problem is relevant to aircraft produced by more than one manufacturer. Also, manufacturers have the equipment to
store and analyze these data and have the most detailed understanding of their own products.
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B. Opportunities for Electronic Data Interchange
One of the XML/EDI objectives is to make the transfer of documents between organizations as easy as possible

to the point that it is transparent to the user. With DataAdaptors designed for persistence engine, data objects
generated by aircraft databinding process and distributed drivers via the use of URLs, the overall aircraft database
architecture aids in interchanging data to legacy applications. Validation, cross-reference look-up tables, and most
importantly, application logic can be used during the interchange process. Each designer effectively becomes a
trading partner, sending and receiving transactions, internal and external to the organization. Even if design and
manufacture clients do not support XML natively, it is not a major hindrance. Industry companies can easily write
standard translator codes (using Java codes, XSLT, or other scripting language, etc.) that reflect industry rules, to
provide for greater mapping and integration of data exchanged over XML-based database. For example, the aircraft
data object APIs provided by aircraft databinding provides a user the tools to access and manipulation design data
easily. If these objects and different design companies' electronic commerce (EC) mechanisms are applied to our
designed database, we move from data only inferences to apply XML-based agent technology to assist in the design
challenges.

 VIII. Conclusion
In this work, an XML-based database model for use in multidisciplinary aircraft design has been designed and

implemented, which meets design requirements of diverse disciplines. The database consists of aircraft data object
models, data schemas, databinding and a database persistence engine. Aircraft Data Object (ADO) model
encompasses most common components involved in multidisciplinary aircraft design, as well as various pertinent
disciplines, such as aerodynamics, structures, cost, materials, performance, stability and control and weights. STEP
AP209 standard is used to describe each component's geometry and FEM data. The ADO model precisely defines
the organizational structure supporting aircraft design data and the conventions adopted to standardize the data
exchange.

A set of database schemas was designed based on the ADO model in order to store and validate XML-based
aircraft data. By using XML Schema to represent aircraft Schema, a set of constraints are established to construct
and to further schema-validate the aircraft data. The database schema follows a modular design pattern such that it is
extensible for future addition, modification, or reusability.

The aircraft databinding provides an object interface to various aircraft disciplines, allowing automated storage
and retrieval of XML-based aircraft design results within and across disciplines. Most of the data manipulation
services are transparent to the aircraft designer and simulation codes. This higher-level database development with
automation support provides a common working environment, which would enhance the productivity of
multidisciplinary projects.

The database persistence engine offers facilities to simultaneously work on independent tasks in a product
development process, as well as facilities to collaborate on the design of aircraft components. These include, among
other things, an aircraft data store with DataAdaptors and MapGenerator, and a powerful XML/EDI-enabled
collaborative interchange and validation scheme. The designed XML-based aircraft database can exist on the server,
the client, or both. Combined with aircraft databinding and XML/EDI technology, the aircraft database persistence
engine facilitates the exchange of different types of design data between industrial organizations. Together with the
integration of aircraft data modeling, this development means a major step forward in collaborative aircraft design.
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